

Peripheral chemoreceptor contribution to ventilatory control during steady-state exercise

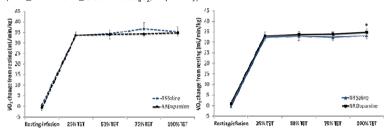
Ana B. Peinado^{1,2}, Blair D. Johnson¹, Jennifer L. Taylor¹, and Michael J. Joyner¹

¹Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA.

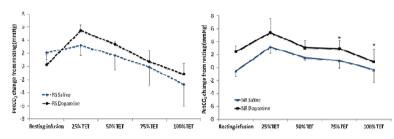
²Department of Health and Human Performance, Technical University of Madrid, Madrid, Spain.

ABSTRACT

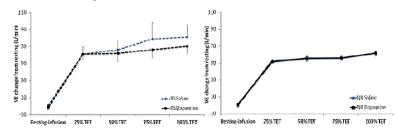
We tested the hypothesis that the carotid body chemoreceptors (CB) contribute to ventilatory control during steady-state exercises. Six men completed two randomized bouts of cycling exercise at 65% VOzmax for up to 2 hours during an IV infusion of dopamine (D; 2 µg/kg/min) to acutely inactivate the CB, or a saline infusion (S). Expired gases were analyzed at baseline, resting-infusion, and during exercise (25%, 50%, 75% and 100% of total exercise time). A hypoxic ventilatory response (HVR) test was performed after exercise during the infusion condition. Subjects were classified as responders (RS; n=3) if their HVR was lower during D vs. S (1.03 ± 0.6 vs. 2.14 ± 0.4 L/min/%S_a/2). In the non-responders group (NR), partial pressure of end-tidal CO₂ had a greater delta from baseline at 75% (2.9 ± 2.1 vs. 1.1 ± 1.9 mmHg) and 100% (0.9 ± 3.4 vs. -0.3 ± 3.3 mmHg) during D than S, and the increase in oxygen uptake at 100% was greater during D vs. S (34,7± 2.6 vs. 3.0 ± 2.6 mL/min/kg). In NR, there were no differences in the changes from baseline for ventilation (VE), VE/VCO₂, respiratory rate, tidal volume, and respiratory exchange ratio between conditions. In RS, there were no differences between D and S in any variables. When the data was pooled, HVR accounted for 37% of the variance in VE at 100%. Despite evidence that CB chemosensitivity was blunted, the CB appear to play a minor role in controlling ventilation during steady-state exercise.

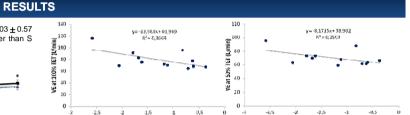

INTRODUCTION

- Data obtained from denervated animal preparations suggest a potential role for the carotid body chemoreceptors (CB) in mediating a portion of the hyperventilatory response to heavy exercise (1).
- In humans, the CB appear to play a role in fine tuning ventilation during exercise (2).
- Low dose infusions (2-5 µg/kg/min) of IV dopamine have been shown to blunt CB chemosensitivity, similar to hyperoxia. In this context, using an IV infusion of low dose dopamine can be used as a tool to inhibit CB activity during exercise without directly influencing arterial oxygen content, that would otherwise be observed if hyperoxia were used.
- The aim of this study was to examine the contribution of the CB to ventilatory control during steady-state exercise in healthy exercise trained humans.


METHODS

- Six trained, healthy males (32 ± 9 yrs; BMI: 23.0 ± 1.1 kg/m²; VO₂max: 58.2 ± 2.6 ml/kg/min) completed two randomized bouts of cycling exercise at 65% VO₂max for up to 2 hours.
- One session was performed with an IV infusion of dopamine (D; 2 µg/kg/min) to blunt CB chemosensitivity and the other with an IV infusion of saline (S).
- Subjects consumed a macronutrient-controlled (50% carbohydrate, 20% protein, 30% fat) diet for 3 days prior to each study day.
- Expired gases were analyzed at baseline, resting-infusion, and during exercise (25%, 50%, 75% and 100% of total exercise time; TET). Blood was drawn for blood gases analysis at each timepoint.
- A hypoxic ventilatory response (HVR) test was performed during the infusion conditions 15 minutes following exercise. Three minutes at: room air, 16% O₂, and 10% O₂
- Subjects were classified as responders (RS) if their HVR was lower during D vs. S and as non-responders (NR) if their HVR during D was equal to or greater than S.
- Statistical comparisons were made using a two way repeated-measures ANOVA. P values of ≤0.05 were considered statistically significant. Data are expressed as means ± SEM.


Three subjects were classified as RS as D reduced their HRV from 2.14 \pm 0.40 L/min/%S $_a$ O $_2$ to 1.03 \pm 0.57 L/min/%S $_a$ O $_2$. The other three subjects were classified as NR as their HVR during D was greater than S (1.17 \pm 0.45 vs. 0.71 \pm 0.38 L/min/%S $_a$ O $_2$, respectively).


The increase in oxygen uptake (VO₂) at 100% TET was greater during D vs. S (p=0.005) in NR, while there was no difference in RS

In NR, the partial pressure of end-tidal CO₂ (PetCO₂) had a greater change from baseline at 75% (p=0.05) and 100% TET (p=0.05) during D than S. There were no differences between conditions for the changes from baseline in PetCO₂ in RS.

There were no differences in the changes from baseline for ventilation (VE) between conditions. In RS, the ventilatory response was greater during D vs. S although not statistically distinguishable between conditions.

When the data was pooled, HVR accounted for 37% of the variance in VE at 100% TET and 25% at 50% TET

		Barada a ladaalaa		ponders	2204 EEE	40.00
	_	Resting-infusion	25% TET	60% TET	76% TET	100% TET
P.02	D	3.3 ± 2.3	16.3 = 2.8	14.7 ± 3.2	12.7 ± 2.8	11.3 ± 3.0
(mmHg)	Ş	5.3 ± 7.3	-18.0 = 3.8	-13.C ± 8.1	-1.3 ± 14.2	-6.3 ± 2.6
P.CO.	D	-3.8 ± 0.3	-2.3 = 1.9	-3.2 ± 2.0	-4.3 ± 2.E	-6.3 ± 2.
(mmHg)	s	1.7 ± 2.7	-1.9 ± 2.9	-3.5 ± 2.4	-5.7 ± 2.8	-9.3 ± 2.6
VE/VCO2	D	-U.U1 ± 1.J	-10.6 = 2.5	-8.L ± 2.3	-1.4 ± 3.L	-5.5 ± 3.1
1611002	8	-3.4 ± 1.3	-7.8 _ 3.9	-8.1 ± 0.5	-4.1 ± 1.6	-1.4 ± 1.7
RR	D	-12 ± 3.2	19.1 = 1.2	23.5 ± 2.8	24.7 ± 11.2	21.2 ± 1.6
(Intestitisárda)	S	4.1 ± 0.3	22.5 _ 2.0	25.E ± 3.5	32.8 ± 0.5	J2.3 ⊥ 7.7
V,	D	114 + 374	13097 - 2279	11111 + 210 2	118A A + 235 1	1159 1 + 222 1
(ml)	S	-135.8 ± 78.8	1148.9 = 174.8	1141.4 ± 171.3	1129.2 ± 133.5	1213.5 ± 75.4
RER	D	-0.02 ± 0.34	0.17 = 3.12	0.12 ± 0.11	0.12 ± 0.12	3.11 ± 0.12
RER	S	0.01 + 0.74	N 12 - 7 NS	0 15 + 0 OR	N 13 + N FR	1 12 + A AF
Non-respenders						
		Resting-infusion	25% TET	60% TET	76% TET	100% TET
P.02	D	24.0 ± 0.5	13.0 = 23.5	1.5 ± 4.8	-I 0.3 ± 9.1	0.7 ± 7.4
(mmHg)	3	-7.3 ± 3.3	-0.7 = 14.4	17.E ± 21.7	10.3 ± 22.2	-11.3 ± 2.2
P.CO.	D	79 + N F	-19 - 17	-27 + 2 N	-2 N + 2 7	-97 + 90
(mmHg)	S	70 + 07	-27 - 1 R	41 + 23	-33+3F	47+39
VE/VCO.	D	-2.4 ± 1.5	-9.1 ± 2.1	-7.2 ± 2.0	-0.8 ± 2.2	-5.4 ± 2.8
VEIVCO2	8	1.8 ± 0.4	-8.0 = 1.1	-4.E ± 1.9	∠.0 ± 2.C	-2.3 ± 2.0
RR	D	O.CO1 ± 0.7	17.7 = 2.1	21.E ± 2.8	19.8 ± 3.2	24.3 ± 5.0
(breathsárán)	S	3.5 ± 0.3	20.3 ± 3.8	21.E ± 3.0	23.2 ± 5.5	27.7 ± 8.3
V٠	D	143.4 ± 112.1	1280.7 ± 218.8	1202.C ± 234.3	1297.0 ± 293 <i>5</i>	1227.3 ± 868.2

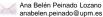
There were no differences between conditions for the changes from baseline for partial pressure of O_2 (P_aO_2) and CO_2 (P_aCO_2), VE/VCO_2 , respiratory rate (RR), tidal volume (V_T), and respiratory exchange ratio (RER) in any group.

-252 ± 4.3

1137.E ± 157.3

-0.04 ± 0.04

1088.8 ± 282.0


1032.4 ± 348.4

CONCLUSION

- Carotid body chemosensity appears to play a minor role in controlling ventilation during prolonged steady-state exercise.
- Although dopamine blunted the HVR during light exercise in the RS, it does not appear that this
 dose of dopamine affected CB-mediated ventilatory control during prolonged steady-state
 exercise.

REFERENCES

- Dempsey JA. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance. J Physiol 590: 4129-4144, 2012.
- Forster HV and Pan LG: The role of the carotid chemoreceptors in the control of breathing during exercise. Med Sci Sports Exerc 26: 328-336, 1994.

