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ABSTRACT

We tested the hypothesis that the carotid body chemoreceptors (CB) contribute to ventilatory control during
steady-state exercise. Six men completed two randomized bouts of cycling exercise at 65% VOzmax for up
to 2 hours during an IV infusion of dopamine (D; 2 pg/kg/min) to acutely inactivate the CB, or a saline
infusion (S). Expired gases were analyzed at baseline, resting-infusion, and during exercise (25%, 50%,
75% and 100% of total exercise time). A hypoxic ventilatory response (HVR) test was performed after
exercise during the infusion condition. Subjects were classified as responders (RS; n=3) if their HVR was
lower during D vs. S (1.03% 0.6 vs. 2.14 * 0.4 L/min/%S,0,). In the non-responders group (NR), partial
pressure of end-tidal CO, had a greater delta from baseline at 75% (2.9 + 2.1 vs. 1.1 £ 1.9 mmHg) and
100% (0.9 +3.4 vs. -0.3 = 3.3 mmHg) during D than S, and the increase in oxygen uptake at 100% was
greater during D vs. S (34.7% 2.6 vs. 33.0 £2.6 mL/min/kg). In NR, there were no differences in the changes
from baseline for ventilation (VE), VE/VCO,, respiratory rate, tidal volume, and respiratory exchange ratio
between conditions. In RS, there were no differences between D and S in any variables. When the data was
pooled, HVR accounted for 37% of the variance in VE at 100%. Despite evidence that CB chemosensitivity
was blunted, the CB appear to play a minor role in controlling ventilation during steady-state exercise.
Funding: NIH RO1DK090541

INTRODUCTION

Data obtained from denervated animal preparations suggest a potential role for the carotid
body chemoreceptors (CB) in mediating a portion of the hyperventilatory response to
heavy exercise (1).

In humans, the CB appear to play a role in fine tuning ventilation during exercise (2).

Low dose infusions (2-5 pg/kg/min) of IV dopamine have been shown to blunt CB
chemosensitivity, similar to hyperoxia. In this context, using an IV infusion of low dose
dopamine can be used as a tool to inhibit CB activity during exercise without directly
influencing arterial oxygen content, that would otherwise be observed if hyperoxia were
used.

The aim of this study was to examine the contribution of the CB to ventilatory control
during steady-state exercise in healthy exercise trained humans.

METHODS

® Six trained, healthy males (32 £ 9 yrs; BMI: 23.0 + 1.1 kg/m?, VO,max: 58.2 + 2.6
ml/kg/min) completed two randomized bouts of cycling exercise at 65% VO,max for up to 2
hours.

One session was performed with an IV infusion of dopamine (D; 2 pug/kg/min) to blunt CB
chemosensitivity and the other with an IV infusion of saline (S).

Subjects consumed a macronutrient-controlled (50% carbohydrate, 20% protein, 30% fat)
diet for 3 days prior to each study day.

Expired gases were analyzed at baseline, resting-infusion, and during exercise (25%, 50%,
75% and 100% of total exercise time; TET). Blood was drawn for blood gases analysis at
each timepoint.

A hypoxic ventilatory response (HVR) test was performed during the infusion conditions 15
minutes following exercise. Three minutes at: room air, 16% O,, and 10% O,,

Subjects were classified as responders (RS) if their HVR was lower during D vs. S and as
non-responders (NR) if their HVR during D was equal to or greater than S.

Statistical comparisons were made using a two way repeated-measures ANOVA. P values
of <0.05 were considered statistically significant. Data are expressed as means + SEM.

Three subjects were classified as RS as D reduced their HRV from 2.14 4 0.40 L/min/%S,0, to 1.03 £ 0.57
L/min/%S,0,. The other three subjects were classified as NR as their HVR during D was greater than S

(1.17 £0.45 vs. 0.714 0.38 L/min/%S,0,, respectively).
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The increase in oxygen uptake (VO,) at 100% TET was greater during D vs. S (p=0.005) in NR, while there

was no difference in RS.

PerCO, change from rasting(mmHg)

PetCO, change fram resting(mmHg)
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In NR, the partial pressure of end-tidal CO, (PetCO,) had a greater change from baseline at 75% (p=0.05)
and 100% TET (p=0.05) during D than S. There were no differences between conditions for the changes

from baseline in PetCO, in RS.
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There were no differences in the changes from baseline for ventilation (VE) between conditions. In RS, the
ventilatory response was greater during D vs. S although not statistically distinguishable between

conditions.
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When the data was pooled, HVR accounted for 37% of the variance in VE at 100% TET and 25%

at 50% TET.
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There were no differences between conditions for the changes from baseline for partial pressure of
0, (P,0,) and CO, (P,CO,), VE/VCO,, respiratory rate (RR), tidal volume (V;), and respiratory
exchange ratio (RER) in any group.

CONCLUSION

= Carotid body chemosensity appears to play a minor role in controlling ventilation during
prolonged steady-state exercise.

= Although dopamine blunted the HVR during light exercise in the RS, it does not appear that this
dose of dopamine affected CB-mediated ventilatory control during prolonged steady-state
exercise.
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